Friday, 06.27.2025, 9:33 PM
Welcome Guest | RSS
Main | Organic Chemistry | Registration | Login
Site menu
Login form
Search
Site friends
  • Create your own site
  • Statistics

    Total online: 1
    Guests: 1
    Users: 0
    My site
       Organic Chemistry

    Back to GWU
    Back to Main

    Chapter 1,2,3--
    ionic vs covalent bonds
    sigma vs pi bonds
    pauli exclusion - spin pairs
    Hunds rule
    hybridization
    atomic orbitals form molecular orbitals -- same # in and out
    formal charge = group # - lone paire - 1/2 (bonding e-)
    resonance -- representations, e- move, not atoms , obey octet rule, dont have same
        energy, hybrid
    empirical formula -- simplest reduction to atoms        molecular - represent molecules
    Arrhenius Acid - dissolves in H2O to give H3O+
    Bronstead - Lowry Acid - H+ donor
    Lewis Acid - electron pair acceptor
    Acid strength increases w/ size, resonance, electronegativity, more positive on C, more polar
    Ka, pKa
    single bonds - free rotar    double bond- 1 sigma  1 pi, rigid-no rotation
    triple bond- 1 sigma  2 pi ->orthogonal, rigid
    Isomers:
    constitutional/structural - same formula, different connectivity
    geometric - same formula, same connectivity
    organic oxidation - gain of O or loss of H

    Hydrocarbon classes--
    alkanes-- R, alkyl groups, saturated, made completely of C & H, haloalkane RX
    alkenes-- R, 1 unsaturation--been oxidized, double bond, , C & H
    alkynes-- R, 2 unsaturated, triple bond, C & H
    Aromatics-- Ar, Aryl groups, contain benzene ring
    Alcohols-- ROH, hydroxyl groups
    Thiols-- RSH, flavoring agent in natural gas
    Aldehydes-- R-C=OH, cabonyl  groups
    Ketones-- R-C=OR'
    Acids-- R-COOH    Acid Halide-- R-C=OX    Acid Anhydride R-C=O-O=O-R
    Esters R-C=O-OR'    Amides 1o  R-C=O-NR   2o  R-C=O-NR2
    Ethers-- R-O-R, polar, organic "water"    Amines-- 1o RNH2    2o R2NH    3o R3N
    Nitriles -- RCN

    Alkanes: simplest family of hydrocarbons (H,C) also called paraffins, single bonds only
        aliphatic, homologus - differ in chain length by CH2,     CnH2n+2
        n- straight/normal    iso- isomer    sec - secondary    tert - tertiary
    methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane,
    undecane, dodecane, tridecane, tetradecane, pentadecane, eicosane, heneicosane,
    triacontane (all compounds from 3 have cyclic forms)
    primary C - attached to 1 C    secondary - 2 C    tertiary 3C &nbbsp;  quadrinary  to 4C
    primary H - attached to primary C    secondary H to secondary C  tertiary to tertiary

    naming
    newman & sawhorse

    geminal- two substituents on same C            vicinal - on adjacent C
    ring flip -- relative position doesnt change

    rotational strain (tortional) - staggered, elipsed
        atoms as far as possible called "staggard' (more staggered, lower E)
        atoms close together called "eclipse" (more elipsed, higher energy)
        steric hinderance - guache interactions
    ring (angle) strain -
        tighter bond strain - more explosive
    increase A value == more likely to be equitorial in cyclohexane

    rotomers - rotation

    Chapter 4:
    mechanism - how a rxn goes
        addition: A + B --> C        elimination    C--> B + A
        substitution:    A-B +  C-D ---> A-C + B-D
        rearrangement: A --> W
        homolytic cleavage (evemly broken) -- generates radicals
        heterolytic cleaveage (not same) -- creates ions
        initiation stepts - generates radicals
        propogation- two types --one makes product & radical, other makes only radical
        termination - gets rid of radical

    kinetics - how fast a rxn goes (rate)
        rate = k [A]x[B]y
        zero order - [x] is irrelevant    1st- [x] -> [2x] rate goes up by factor of 2
            second order [x] -> [2x] rate foes up by factor of 4

    thermodynamics - how hot a rxn goes (stability)
        Keq = [products]/[reactants]      >1 => favors products, reaction to completion
        deltaG = products - reactants    deltaGo = RT(ln Keq) = deltaHo - TdeltaSo

    reaction profiles/diagrams
        transition states - dont exist, "imaginary" structures to represent smooth transition
        intermediate - real structures, high E, reactive species ("step wise" rxn)
       Hammon Postulate - transition state looks like nearest energy spieces--
            "early" transition state looks like sm, "late" looks like products
        kH/kD measure of R-H bond break to R-D(euterium) bond break, determines
            rate determining step
        radicals- more reactive w/ e- donating, e- donating makes feel smaller, withdraw-larger
            opp e- donating pushes into neg charge

    Chapter 5 :
    symmetry operator - makes one side same as other side (ex. plane)
        infiite axis - move around, but cannot tell
    chirality- look @ orientation of atoms in space
        chiral- unique orientation in space (of 4 things about C), non-superimposible mirror
            images (enantiomers)
        chiral center (steriogenic center) - C where chiral, rep by *
            n= # *    2^n = # enantiomers
    steriochemistry - study of chirality
    achiral- has symmetry element
    stereoctenters rotate plane polarized light- dextrorotatory (right), levorotatory (left)
        angle specific rotation [alpha]D = (observed rotation-degrees)/(path length x [x])
    absolute configuration - does # go round to right or left? - rank by atomic #, in case of tie,
        move 1 atom out, multiple bonds as "back bonded"
    R(ectus)- # go around to right
    S(inister)- # go around to left
    Cohn-Ingold-Prelog (CIP) -- rules to generate priority
    1.) higher atomic # is hgher priority
    2.) if cant decide, move 1 atom out
    3.) multiple bonds count as "back bonded"
    diastereomeres - 2 or more stereocenters
    meso - rendered achiral by symmetry element
    racemic- mixture of R & S (50-50), called racemates
    enantiomeric excess - how much more of one enantiomer over 50% (60:40 => 20%)
    resolution- separate mixtures (diasteriomers)
        resolving agent- chiral molecule, easily added/cleaved, making diastereomers, leave
            resolving agent to get enantiomers) ~~~ chiral chromatography
    Fisher projections -- can only rotate 180degrees for same molec, 90degrees=enantiomer
    *Nitrogen sometimes not chiral because of inversion--lone pair flips*
    *can have chiral w/o chiral center* (ex. allene, fish molecules)
    chiral centers in mechanisms:
    1. walden inversion R-->S, S-->R
    2. racemization (inversion and retention, 100% R----> 50%R + 50%S)
    3. retention (R--->R)

    Chapter 6:
    alkyl-    fluro-    chloro-    bromo-    iodo-
    type: primary, seconday, tertiary, vinyl, allyl, aryl
    usage: solvent, coatings (teflon), refridgeration (CFCs), anesthetics, pesticides
    properties: dipole moments decrease going down except Cl > F , bp increases w/size
        bond length increases w/size, inductive effect- all halogens are e- withdrawing
    preparation:
        substitution: free radical halogenation, allylic halogentation
        additions
        converstions
    REACTION MECHANISMS:
    SN2 Bimolecular Nucleophilic Substitution
        -inversion    -concerted--transition state    -second order kinetics   rate=k[Nu][SM]
        -Dunnitz 109.5 degrees, nucleophile must enter from backside at this angle
        -steric hinderance, increase E of transition state (inc deltaG, dec rate)
            CH3X > primary> secondary> tertiary
        - nucleophile more reactive/inc E => inc reaction rate by lower deltaG, stable, not basic
            neg charge better than nuetral, nuc strength inc left to right & down periodic table
        -leaving group- "soft" (big), stable, lower transition state E
            OTs > OFs> I- > Br- > Cl- > F- >> OH- > NHR - >> OR-
        -solvent - polar (to stabilize transition state), aprotic (no protons), ex. THF, ethers
    SN1 Unimolecular Nucleophilic Substitution
        -retention & inverstion, loss of optical activity
        -true intermediate
        - 1st order kinetics   rate = k [SM]
        -intermediate (carbocation) CH3X < primary < secondary < tertiary
        -nucleophile - same as SN2, non basic, more reactive (dec deltaG)
        -leaving group0 rt determining step- leaving group bond break, more stable anion/LG
            ==> faster reaction
        -solvent- polar, inc dielectric k, stabilize carbocation formation, protic
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    kH/kD - which bond impt to rate dt step
    C-H bond weaker than C-D bond => if deprotination is RDS, then kD >1, observe E2)
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    Elimination Reactions - eject small molecule, cometes w/SN2 & SN1
    E2- Bimolecular elimination (Nu- more basic ==> more E2 instead of SN2)
    E1- Unimolecular elimination (competes w/ SN1)
        no kH/kD
        follow Zaitsev's Rule- in an elimination rxn, most substituted product b/c substitution
            increases alkene stability

    Chapters 7,8,9
    Alkenes- every two H is one unsaturation, C are sp2, pi bonds lie along sigma bond, flat
        in space, 6 atoms lie in plane, bond angle is 120 degrees, rigid, stability increases w/EDG
    E/Z - E two high priority on opp side, Z- two high priority on same side
    Alkynes- linear geometry, lots of s-character, sp hybridized, easy to deprotinate
    regiospecific- pick one product over another
    Markovnikov's Rule- when adding HZ to a double bond, the H goes to side w/fewer R groups,
        the Z goes to side w/ more R
    Preperation of Alkenes-
        elimination
    Uses of Alkenes-
        halogenations
        halohydrin
        alcohol formation
        oxymercuration
        special- Carbenes, Smmons-Smith, hydrogenation
        oxidation- glycol, epoxidation, antidiol, oxidative cleavage- ozonolysis, KMnO4
        polymerization- catonic, radical, radical addition
    Forming Alkynes
        elimination
    Usage Reactions-
        halogenation
        hydrobromation
        methyl ketone
        hydrogenation/reduction
        oxidation rxn
        carbon nucleophile/chain extension
    Bredts Rule- ther are no bridge head double bonds unless there are 8 members or more in a ring
    Hoffman's Rule- with large base, may eliminate to lease substituted double bond

    Chapter 10 - Alcohols (ROH) & Thiols (RSH)
    Nomenclature   -ane  +ol
        # chain to give alcohol priority
        find other substituents
    Properties
        hydrogen bond- increase b.p
        dipole moments (polar protic solvents)
        CH3OH  + HCl -----> CH3OH2  + Cl-
        CH3O- Na+  alkoxide are strong bases (deprotanated acid-like alcohol)
        NMR: OH- disappears w/ D2O
        IR: 3600 cm-1 OH  (1050 cm-1 C-O)
        MS: 31 + alpha to alcohol
    Formation Reactions
        syn diol
        anti diol
        A/M
        M
    Formation via Nucleophilic Addition:
        Grignard
        "C  Nu- "
    Formation Via Reduction:
        Raney Ni goes after carbonyl
        NaBH4 delivery of H-
        Lithium Aluminum Hydride >reducing agent than NaBH4
        Thiol-- NaNH2 thioether
    mechanism--
        Nu- addition to carbonyl --- addition elimination rxn

    Chapter 11: Alcohol Usage
    Oxidation Reactions-
        Na2Cr2O7
        PCC
    Reduction Reactions-
        TsCl / LAH
        HCl or SOCl2/pry or PCl3/ Cl2
        PBr/Br2 or HBr
        Alcohol as Nu-
        alkoxide
        Whittig Rxn - ylide  (betaine/oxaphosphine)

    Free website builderuCozCopyright MyCorp © 2025